Submission #1224605


Source Code Expand

/+ dub.sdl:
    name "F"
    dependency "dcomp" version=">=0.6.0"
+/

import std.stdio, std.algorithm, std.range, std.conv;
import std.container.rbtree;

// import dcomp.foundation, dcomp.scanner;
// import dcomp.array;
// import dcomp.algorithm;
// import dcomp.container.deque;

// import dcomp.datastructure.simpleseg;


int n;
int[2][] cards;
int[][] zero, one;
int q;
int[2][] ques;

void solve() {
/*    writeln(n, " ", q);
    writeln(cards);
    writeln(ques);*/
    zero = new int[][](n+2);
    one = new int[][](n+2);
    foreach (i; 0..n) {
        zero[cards[i][0]] ~= i;
        one[cards[i][1]] ~= i;
    }
    auto buf = new int[](n+1); buf[] = -1;
    auto deq = Deque!int();
    bool[] used = new bool[n];
    bool[] isOne = new bool[n+1];
    auto tr = redBlackTree!(int[2])();
    int base = 0;
    foreach (i; 0..n+1) {
        foreach (d; zero[i]) {
            tr.insert([cards[d][1], d].fixed);
        }
        foreach (d; one[i]) {
            deq.insertBack(d);
        }
        while (deq.length) {
            auto u = deq.back; deq.removeBack;
            if (used[u]) continue;
            used[u] = true;
            isOne[i] = true;
            buf[i] = u;
            base++;
            break;
        }
        if (buf[i] != -1) continue;
        while (tr.length) {
            auto p = tr.back; tr.removeBack;
            int u = p[1];
            if (used[u]) continue;
            used[u] = true;
            buf[i] = u;
            break;
        }
    }
    if (buf.count(-1) >= 2) {
        foreach (_; ques) {
            writeln(-1);
        }
        return;
    }

//    writeln(buf);
    auto seg = SimpleSeg!(int, max, -(10^^9))(n+1);
    foreach_reverse (i; 0..n+1) {
        if (buf[i] == -1) {
            seg[i] = 0;
            continue;
        }
        auto cd = cards[buf[i]];
        if (isOne[i]) {
            seg[i] = seg.sum(i+1, n+1);
        } else {
            seg[i] = max(seg[i], seg.sum(i+1, cd[1]));
            seg[i] = max(seg[i], 1+seg.sum(cd[1], n+1));
        }
/*        foreach (j; i+1..n+1) {
            int nx = dp[j];
            if (!isOne[i] && cd[1] <= j) nx++;
            dp[i] = max(dp[i], nx);
        }*/
    }
//    writeln(dp);
/*    foreach (i; 0..n+1) {
        seg[i] = dp[i];
    }*/
    foreach (p; ques) {
        int ans = -1;
/*        foreach (i; p[0]..p[1]) {
            ans = max(ans, dp[i]);
        }
        foreach (i; p[1]..n+1) {
            ans = max(ans, 1+dp[i]);
        }*/
        ans = max(ans, seg.sum(p[0], p[1]));
        ans = max(ans, 1+seg.sum(p[1], n+1));
        if (ans == -1) {
            writeln(-1);
        } else {
            writeln(ans+base);
        }
    }
}

int main() {
    auto sc = new Scanner(stdin);
    sc.read(n);
    int[2][] buf = new int[2][n];
    foreach (i; 0..n) {
        sc.read(buf[i][0], buf[i][1]);
    }
    int[] c;
    sc.read(c);
    c.sort!"a<b";
    int getI(int x) {
        return binSearch!(i => x <= c[i])(-1, n+1);
    }
    cards = new int[2][n];
    foreach (i; 0..n) {
        cards[i][0] = getI(buf[i][0]);
        cards[i][1] = getI(buf[i][1]);
        cards[i][1] = min(cards[i][0], cards[i][1]);
        swap(cards[i][0], cards[i][1]);
    }
    sc.read(q);
    ques = new int[2][q];
    foreach (i; 0..q) {
        sc.read(ques[i][0], ques[i][1]);
        ques[i][0] = getI(ques[i][0]);
        ques[i][1] = getI(ques[i][1]);
        ques[i][1] = min(ques[i][0], ques[i][1]);
        swap(ques[i][0], ques[i][1]);
    }
    solve();
    return 0;
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/algorithm.d */
// module dcomp.algorithm;

import std.range.primitives;
import std.traits : isFloatingPoint, isIntegral;

//[0,0,0,...,1,1,1]で、初めて1となる場所を探す。pred(l) == 0, pred(r) == 1と仮定
T binSearch(alias pred, T)(T l, T r) if (isIntegral!T) {
    while (r-l > 1) {
        T md = (l+r)/2;
        if (!pred(md)) l = md;
        else r = md;
    }
    return r;
}

T binSearch(alias pred, T)(T l, T r, int cnt = 60) if (isFloatingPoint!T) {
    foreach (i; 0..cnt) {
        T md = (l+r)/2;
        if (!pred(md)) l = md;
        else r = md;
    }
    return r;
}

Rotator!Range rotator(Range)(Range r) {
    return Rotator!Range(r);
}

struct Rotator(Range)
if (isForwardRange!Range && hasLength!Range) {
    size_t cnt;
    Range start, now;
    this(Range r) {
        cnt = 0;
        start = r.save;
        now = r.save;
    }
    this(this) {
        start = start.save;
        now = now.save;
    }
    @property bool empty() {
        return now.empty;
    }
    @property auto front() {
        assert(!now.empty);
        import std.range : take, chain;
        return chain(now, start.take(cnt));
    }
    @property Rotator!Range save() {
        return this;
    }
    void popFront() {
        cnt++;
        now.popFront;
    }
}


E minimum(alias pred = "a < b", Range, E = ElementType!Range)(Range range, E seed)
if (isInputRange!Range && !isInfinite!Range) {
    import std.algorithm, std.functional;
    return reduce!((a, b) => binaryFun!pred(a, b) ? a : b)(seed, range);
}

ElementType!Range minimum(alias pred = "a < b", Range)(Range range) {
    assert(!range.empty, "range must not empty");
    auto e = range.front; range.popFront;
    return minimum!pred(range, e);
}

E maximum(alias pred = "a < b", Range, E = ElementType!Range)(Range range, E seed)
if (isInputRange!Range && !isInfinite!Range) {
    import std.algorithm, std.functional;
    return reduce!((a, b) => binaryFun!pred(a, b) ? b : a)(seed, range);
}

ElementType!Range maximum(alias pred = "a < b", Range)(Range range) {
    assert(!range.empty, "range must not empty");
    auto e = range.front; range.popFront;
    return maximum!pred(range, e);
}

unittest {
    assert(minimum([2, 1, 3]) == 1);
    assert(minimum!"a > b"([2, 1, 3]) == 3);
    assert(minimum([2, 1, 3], -1) == -1);
    assert(minimum!"a > b"([2, 1, 3], 100) == 100);

    assert(maximum([2, 1, 3]) == 3);
    assert(maximum!"a > b"([2, 1, 3]) == 1);
    assert(maximum([2, 1, 3], 100) == 100);
    assert(maximum!"a > b"([2, 1, 3], -1) == -1);
}

bool[ElementType!Range] toMap(Range)(Range r) {
    import std.algorithm : each;
    bool[ElementType!Range] res;
    r.each!(a => res[a] = true);
    return res;
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/container/deque.d */
// module dcomp.container.deque;

struct Deque(T) {
    import core.exception : RangeError;
    import core.memory : GC;
    import std.range : ElementType, isInputRange;
    import std.traits : isImplicitlyConvertible;

    struct Payload {
        T *d;
        size_t st, length, cap;
        @property bool empty() const { return length == 0; }
        alias opDollar = length;
        ref inout(T) opIndex(size_t i) inout {
            version(assert) if (length <= i) throw new RangeError();
            return d[(st+i >= cap) ? (st+i-cap) : st+i];
        }
        private void expand() {
            import std.algorithm : max;
            assert(length == cap);
            auto nc = max(size_t(4), 2*cap);
            T* nd = cast(T*)GC.malloc(nc * T.sizeof);
            foreach (i; 0..length) {
                nd[i] = this[i];
            }
            d = nd; st = 0; cap = nc;
        }
        void clear() {
            st = length = 0;
        }
        void insertFront(T v) {
            if (length == cap) expand();
            if (st == 0) st += cap;
            st--; length++;
            this[0] = v; 
        }
        void insertBack(T v) {
            if (length == cap) expand();
            length++;
            this[length-1] = v; 
        }
        void removeFront() {
            assert(!empty, "Deque.removeFront: Deque is empty");        
            st++; length--;
            if (st == cap) st = 0;
        }
        void removeBack() {
            assert(!empty, "Deque.removeBack: Deque is empty");        
            length--;
        }        
    }
    struct RangeT(A) {
        alias T = typeof(*(A.p));
        alias E = typeof(A.p.d[0]);
        T *p;
        size_t a, b;
        @property bool empty() const { return b <= a; }
        @property size_t length() const { return b-a; }
        @property RangeT save() { return RangeT(p, a, b); }
        @property RangeT!(const A) save() const {
            return typeof(return)(p, a, b);
        }
        alias opDollar = length;
        @property ref inout(E) front() inout { return (*p)[a]; }
        @property ref inout(E) back() inout { return (*p)[b-1]; }
        void popFront() {
            version(assert) if (empty) throw new RangeError();
            a++;
        }
        void popBack() {
            version(assert) if (empty) throw new RangeError();
            b--;
        }
        ref inout(E) opIndex(size_t i) inout { return (*p)[i]; }
        RangeT opSlice() { return this.save; }
        RangeT opSlice(size_t i, size_t j) {
            version(assert) if (i > j || a + j > b) throw new RangeError();
            return typeof(return)(p, a+i, a+j);
        }
        RangeT!(const A) opSlice() const { return this.save; }
        RangeT!(const A) opSlice(size_t i, size_t j) const {
            version(assert) if (i > j || a + j > b) throw new RangeError();
            return typeof(return)(p, a+i, a+j);
        }
    }
    
    alias Range = RangeT!Deque;
    alias ConstRange = RangeT!(const Deque);
    alias ImmutableRange = RangeT!(immutable Deque);

    Payload *p;
    private void I() { if (!p) p = new Payload(); }
    private void C() const {
        version(assert) if (!p) throw new RangeError();
    }
    //some value
    this(U)(U[] values...) if (isImplicitlyConvertible!(U, T)) {I;
        p = new Payload();
        foreach (v; values) {
            insertBack(v);
        }
    }
    //range
    this(Range)(Range r)
    if (isInputRange!Range &&
    isImplicitlyConvertible!(ElementType!Range, T) &&
    !is(Range == T[])) {I;
        p = new Payload();
        foreach (v; r) {
            insertBack(v);
        }
    }
    
    @property bool empty() const { return (!p || p.empty); }
    @property size_t length() const { return (p ? p.length : 0); }
    alias opDollar = length;
    ref inout(T) opIndex(size_t i) inout {C; return (*p)[i]; }
    ref inout(T) front() inout {C; return (*p)[0]; }
    ref inout(T) back() inout {C; return (*p)[$-1]; }
    void clear() { if (p) p.clear(); }
    void insertFront(T v) {I; p.insertFront(v); }
    void insertBack(T v) {I; p.insertBack(v); }
    void removeFront() {C; p.removeFront(); }
    void removeBack() {C; p.removeBack(); }
    Range opSlice() {I; return Range(p, 0, length); }
}

unittest {
    import std.algorithm : equal;
    import std.range.primitives : isRandomAccessRange;
    import std.container.util : make;
    auto q = make!(Deque!int);
    assert(isRandomAccessRange!(typeof(q[])));

    //insert,remove
    assert(equal(q[], new int[](0)));
    q.insertBack(1);
    assert(equal(q[], [1]));
    q.insertBack(2);
    assert(equal(q[], [1, 2]));
    q.insertFront(3);
    assert(equal(q[], [3, 1, 2]) && q.front == 3);
    q.removeFront;
    assert(equal(q[], [1, 2]) && q.length == 2);
    q.insertBack(4);
    assert(equal(q[], [1, 2, 4]) && q.front == 1 && q.back == 4 && q[$-1] == 4);
    q.insertFront(5);
    assert(equal(q[], [5, 1, 2, 4]));

    //range
    assert(equal(q[][1..3], [1, 2]));
    assert(equal(q[][][][], q[]));
    //const range
    const auto rng = q[];
    assert(rng.front == 5 && rng.back == 4);
    
    //reference type
    auto q2 = q;
    q2.insertBack(6);
    q2.insertFront(7);
    assert(equal(q[], q2[]) && q.length == q2.length);

    //construct with make
    auto a = make!(Deque!int)(1, 2, 3);
    auto b = make!(Deque!int)([1, 2, 3]);
    assert(equal(a[], b[]));
}

unittest {
    import std.algorithm : equal;
    import std.range.primitives : isRandomAccessRange;
    import std.container.util : make;
    auto q = make!(Deque!int);
    q.clear();
    assert(equal(q[], new int[0]));
    foreach (i; 0..100) {
        q.insertBack(1);
        q.insertBack(2);
        q.insertBack(3);
        q.insertBack(4);
        q.insertBack(5);    
        assert(equal(q[], [1,2,3,4,5]));
        q.clear();
        assert(equal(q[], new int[0]));
    }

}
unittest {
    Deque!int a;
    Deque!int b;
    a.insertFront(2);
    assert(b.length == 0);
}

unittest {
    import std.algorithm : equal;
    import std.range : iota;
    Deque!int a;
    foreach (i; 0..100) {
        a.insertBack(i);
    }
    assert(equal(a[], iota(100)));
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/scanner.d */
// module dcomp.scanner;

class Scanner {
    import std.stdio : File;
    import std.conv : to;
    import std.range : front, popFront, array, ElementType;
    import std.array : split;
    import std.traits : isSomeChar, isStaticArray, isArray; 
    import std.algorithm : map;
    File f;
    this(File f) {
        this.f = f;
    }
    char[512] lineBuf;
    char[] line;
    private bool succ() {
        import std.range.primitives : empty, front, popFront;
        import std.ascii : isWhite;
        while (true) {
            while (!line.empty && line.front.isWhite) {
                line.popFront;
            }
            if (!line.empty) break;
            if (f.eof) return false;
            line = lineBuf[];
            f.readln(line);
        }
        return true;
    }

    private bool readSingle(T)(ref T x) {
        import std.algorithm : findSplitBefore;
        import std.string : strip;
        import std.conv : parse;
        if (!succ()) return false;
        static if (isArray!T) {
            alias E = ElementType!T;
            static if (isSomeChar!E) {
                //string or char[10] etc
                //todo optimize
                auto r = line.findSplitBefore(" ");
                x = r[0].strip.dup;
                line = r[1];
            } else {
                auto buf = line.split.map!(to!E).array;
                static if (isStaticArray!T) {
                    //static
                    assert(buf.length == T.length);
                }
                x = buf;
                line.length = 0;
            }
        } else {
            x = line.parse!T;
        }
        return true;
    }
    int read(T, Args...)(ref T x, auto ref Args args) {
        if (!readSingle(x)) return 0;
        static if (args.length == 0) {
            return 1;
        } else {
            return 1 + read(args);
        }
    }
}



unittest {
    import std.path : buildPath;
    import std.file : tempDir;
    import std.algorithm : equal;
    import std.stdio : File;
    string fileName = buildPath(tempDir, "kyuridenanmaida.txt");
    auto fout = File(fileName, "w");
    fout.writeln("1 2 3");
    fout.writeln("ab cde");
    fout.writeln("1.0 1.0 2.0");
    fout.close;
    Scanner sc = new Scanner(File(fileName, "r"));
    int a;
    int[2] b;
    char[2] c;
    string d;
    double e;
    double[] f;
    sc.read(a, b, c, d, e, f);
    assert(a == 1);
    assert(equal(b[], [2, 3]));
    assert(equal(c[], "ab"));
    assert(equal(d, "cde"));
    assert(e == 1.0);
    assert(equal(f, [1.0, 2.0]));
}

unittest {
    import std.path : buildPath;
    import std.file : tempDir;
    import std.algorithm : equal;
    import std.stdio : File, writeln;
    import std.datetime;
    string fileName = buildPath(tempDir, "kyuridenanmaida.txt");
    auto fout = File(fileName, "w");
    foreach (i; 0..1_000_000) {
        fout.writeln(3*i, " ", 3*i+1, " ", 3*i+2);
    }
    fout.close;
    writeln("Scanner Speed Test(3*1,000,000 int)");
    StopWatch sw;
    sw.start;
    Scanner sc = new Scanner(File(fileName, "r"));
    foreach (i; 0..500_000) {
        int a, b, c;
        sc.read(a, b, c);
        assert(a == 3*i);
        assert(b == 3*i+1);
        assert(c == 3*i+2);
    }
    foreach (i; 500_000..700_000) {
        int[3] d;
        sc.read(d);
        int a = d[0], b = d[1], c = d[2];
        assert(a == 3*i);
        assert(b == 3*i+1);
        assert(c == 3*i+2);
    }
    foreach (i; 700_000..1_000_000) {
        int[] d;
        sc.read(d);
        assert(d.length == 3);
        int a = d[0], b = d[1], c = d[2];
        assert(a == 3*i);
        assert(b == 3*i+1);
        assert(c == 3*i+2);
    }
    writeln(sw.peek.msecs, "ms");
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/foundation.d */
// module dcomp.foundation;
//fold(for old compiler)
static if (__VERSION__ <= 2070) {
    template fold(fun...) if (fun.length >= 1) {
        auto fold(R, S...)(R r, S seed) {
            import std.algorithm : reduce;
            static if (S.length < 2) {
                return reduce!fun(seed, r);
            } else {
                import std.typecons : tuple;
                return reduce!fun(tuple(seed), r);
            }
        }
    }
    unittest {
        import std.stdio;
        auto l = [1, 2, 3, 4, 5];
        assert(l.fold!"a+b"(10) == 25);
    }
}
version (X86) static if (__VERSION__ < 2071) {
    int bsf(ulong v) {
        foreach (i; 0..64) {
            if (v & (1UL << i)) return i;
        }
        return -1;
    }
    int bsr(ulong v) {
        foreach_reverse (i; 0..64) {
            if (v & (1UL << i)) return i;
        }
        return -1;   
    }
    int popcnt(ulong v) {
        int c = 0;
        foreach (i; 0..64) {
            if (v & (1UL << i)) c++;
        }
        return c;
    }
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/datastructure/simpleseg.d */
// module dcomp.datastructure.simpleseg;

// simpleなsegtree
// a op b op .. op x が求められる、遅延評価なし
// (T, op)はモノイドの必要がある、eはモノイド
struct SimpleSeg(T, alias op, T e) {
    const size_t n, sz;
    T[] d;
    @disable this();
    this(size_t n) {
        import std.algorithm : fill;
        import core.bitop : bsr;
        int lg = n.bsr;
        if ((2^^lg) < n) lg++;
        this.n = n;
        this.sz = 2^^lg;
        d = new T[](2*this.sz);
        d.fill(e);
    }
    T opIndex(int idx) {return d[idx+sz];}
    void opIndexAssign(T v, int idx) {
        import std.stdio : writeln;
        idx += sz;
        d[idx] = v;
        while (idx/2 >= 1) {
            idx /= 2;
            d[idx] = op(d[2*idx], d[2*idx+1]);
        }
    }
    //todo more beautiful?
    T sum(size_t a, size_t b, size_t l, size_t r, size_t k) {
        if (b <= l || r <= a) return e;
        if (a <= l && r <= b) return d[k];
        size_t md = (l+r)/2;
        return op(sum(a, b, l, md, 2*k),
            sum(a, b, md, r, 2*k+1));
    }
    //[a, b)
    T sum(size_t a, size_t b) {
        return sum(a, b, 0, sz, 1);
    }
    //todo formatspec?
    string toString() {
        import std.conv : to;
        return d[sz..sz+n].to!string;
    }
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/array.d */
// module dcomp.array;

T[N] fixed(T, int N)(T[N] a) {return a;}

//this is not reference type!(please attention to copy)
struct FastAppender(A) {
    import std.algorithm : max;
    import std.range.primitives : ElementEncodingType;
    import core.stdc.string : memcpy;

    private alias T = ElementEncodingType!A;
    private T* _data;
    private size_t len, cap;
    @property size_t length() {return len;}
    void reserve(size_t nlen) {
        import core.memory : GC;
        if (nlen <= cap) return;
        
        void* nx = GC.malloc(nlen * T.sizeof);

        cap = nlen;
        if (len) memcpy(nx, _data, len * T.sizeof);
        _data = cast(T*)(nx);
    }
    void opOpAssign(string op : "~")(T item) {
        if (len == cap) {
            reserve(max(4, cap*2));
        }
        _data[len++] = item;
    }
    void clear() {
        len = 0;
    }    
    T[] data() {
        return (_data) ? _data[0..len] : null;
    }
}

unittest {
    import std.stdio, std.algorithm;
    auto u = FastAppender!(int[])();
    u ~= 4; u ~= 5;
    assert(equal(u.data, [4, 5]));
}

Submission Info

Submission Time
Task F - Two Faced Cards
User yosupo
Language D (LDC 0.17.0)
Score 2000
Code Size 20695 Byte
Status AC
Exec Time 295 ms
Memory 21660 KB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 2000 / 2000
Status
AC × 3
AC × 61
Set Name Test Cases
Sample sample_01.txt, sample_02.txt, sample_03.txt
All sample_01.txt, sample_02.txt, sample_03.txt, sample_01.txt, sample_02.txt, sample_03.txt, subtask_1_01.txt, subtask_1_02.txt, subtask_1_03.txt, subtask_1_04.txt, subtask_1_05.txt, subtask_1_06.txt, subtask_1_07.txt, subtask_1_08.txt, subtask_1_09.txt, subtask_1_10.txt, subtask_1_11.txt, subtask_1_12.txt, subtask_1_13.txt, subtask_1_14.txt, subtask_1_15.txt, subtask_1_16.txt, subtask_1_17.txt, subtask_1_18.txt, subtask_1_19.txt, subtask_1_20.txt, subtask_1_21.txt, subtask_1_22.txt, subtask_1_23.txt, subtask_1_24.txt, subtask_1_25.txt, subtask_1_26.txt, subtask_1_27.txt, subtask_1_28.txt, subtask_1_29.txt, subtask_1_30.txt, subtask_1_31.txt, subtask_1_32.txt, subtask_1_33.txt, subtask_1_34.txt, subtask_1_35.txt, subtask_1_36.txt, subtask_1_37.txt, subtask_1_38.txt, subtask_1_39.txt, subtask_1_40.txt, subtask_1_41.txt, subtask_1_42.txt, subtask_1_43.txt, subtask_1_44.txt, subtask_1_45.txt, subtask_1_46.txt, subtask_1_47.txt, subtask_1_48.txt, subtask_1_49.txt, subtask_1_50.txt, subtask_1_51.txt, subtask_1_52.txt, subtask_1_53.txt, subtask_1_54.txt, subtask_1_55.txt
Case Name Status Exec Time Memory
sample_01.txt AC 1 ms 256 KB
sample_02.txt AC 1 ms 256 KB
sample_03.txt AC 1 ms 256 KB
subtask_1_01.txt AC 122 ms 11220 KB
subtask_1_02.txt AC 135 ms 9740 KB
subtask_1_03.txt AC 65 ms 6000 KB
subtask_1_04.txt AC 119 ms 11652 KB
subtask_1_05.txt AC 87 ms 5292 KB
subtask_1_06.txt AC 205 ms 12704 KB
subtask_1_07.txt AC 119 ms 19996 KB
subtask_1_08.txt AC 190 ms 19948 KB
subtask_1_09.txt AC 177 ms 14928 KB
subtask_1_10.txt AC 112 ms 11244 KB
subtask_1_11.txt AC 63 ms 10508 KB
subtask_1_12.txt AC 97 ms 10088 KB
subtask_1_13.txt AC 138 ms 9664 KB
subtask_1_14.txt AC 83 ms 8960 KB
subtask_1_15.txt AC 83 ms 11972 KB
subtask_1_16.txt AC 60 ms 3284 KB
subtask_1_17.txt AC 265 ms 20092 KB
subtask_1_18.txt AC 67 ms 8484 KB
subtask_1_19.txt AC 107 ms 11836 KB
subtask_1_20.txt AC 216 ms 18088 KB
subtask_1_21.txt AC 295 ms 20020 KB
subtask_1_22.txt AC 272 ms 19636 KB
subtask_1_23.txt AC 292 ms 21172 KB
subtask_1_24.txt AC 273 ms 20788 KB
subtask_1_25.txt AC 287 ms 20660 KB
subtask_1_26.txt AC 279 ms 20276 KB
subtask_1_27.txt AC 159 ms 20916 KB
subtask_1_28.txt AC 289 ms 19896 KB
subtask_1_29.txt AC 286 ms 20532 KB
subtask_1_30.txt AC 286 ms 21044 KB
subtask_1_31.txt AC 159 ms 18100 KB
subtask_1_32.txt AC 294 ms 19768 KB
subtask_1_33.txt AC 289 ms 20276 KB
subtask_1_34.txt AC 280 ms 20276 KB
subtask_1_35.txt AC 158 ms 20148 KB
subtask_1_36.txt AC 289 ms 21048 KB
subtask_1_37.txt AC 291 ms 20276 KB
subtask_1_38.txt AC 282 ms 19508 KB
subtask_1_39.txt AC 160 ms 17972 KB
subtask_1_40.txt AC 290 ms 21432 KB
subtask_1_41.txt AC 274 ms 21660 KB
subtask_1_42.txt AC 272 ms 19484 KB
subtask_1_43.txt AC 275 ms 19484 KB
subtask_1_44.txt AC 271 ms 21660 KB
subtask_1_45.txt AC 168 ms 17824 KB
subtask_1_46.txt AC 262 ms 20872 KB
subtask_1_47.txt AC 257 ms 20368 KB
subtask_1_48.txt AC 256 ms 18300 KB
subtask_1_49.txt AC 262 ms 18072 KB
subtask_1_50.txt AC 158 ms 18080 KB
subtask_1_51.txt AC 1 ms 256 KB
subtask_1_52.txt AC 1 ms 256 KB
subtask_1_53.txt AC 1 ms 256 KB
subtask_1_54.txt AC 1 ms 256 KB
subtask_1_55.txt AC 1 ms 256 KB